CHAPTER 4

Solution of the Schrodinger Equation
for Four Specific Problems




4.1. Free Electrons

it 1s assumed

that no “wall,” i.e., no potential barrier (V), restricts the propagation of the
electron wave.
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and given the dependence upon both position and time, we try a wavefunction of the
form
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Presuming that the wavefunction represents a state of definite energy E, the equation can be separated
by the requirement,
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Time independent Equation
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Since Kk is inversely proportional to the wavelength, A, it is also called the
“wave vector.” 21

K| =g

§quay, February 27,



Energy continuum of a free electron
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Since no boundary condition had to be considered for the calculation of the

free-flying electron, all values of the energy are “allowed,” 1.e., one obtains
an energy continuum
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Time dependent Equation
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Treating the system as a wave packet, or photon-like entity where the Planck hypothesis gives

I =ho
we can evaluate the constant b
b=—i@
This gives a plane wave solution:
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Free Particle Waves
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which as a complex function can be expanded in the form

Wix.t)= Acos(kx —ax)+ iAsin(kx — @r)
Either the real or imaginary part of this function could be appropriate for a given application. In
general, one 1s interested 1n particles which are free within some kind of boundary, but have

boundary conditions set by some kind of potential. The particle in a box problem is the simplest
example.

The free particle wavefunction is associated with a precisely known momentum:
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but the requirement for normalization makes the wave amplitude approach zero as the wave extends to
infinity (uncertainty principle).
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4.2. Electron in a Potential Well (Bound Electron)

we assume that the electron can move freely between two infinitely
high potential barriers

The potential barriers do not allow the
electron to escape from this potential well
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The potent_ial energy inside the well 1s zero
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Because of the two propagation directions of the electron, the solution of
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Euler equation
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We exclude n = 0, which would yield ¢ = 0, that is, no electron wave

Because of the boundary conditions, only certain solutions of
the Schrodinger equation exist

The allowed values are called “energy levels.”

~ discrete energy level
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Discrete Energy Level “energy quantization.”

E
Es=25C —— n=56

E‘=160 et n=4
E,=9C —— n=

E,=4C —— n=2
E:=1C S n=1

Allowed energy values of an electron that is bound to its atomic nucleus

E is the excitation energy in the present case. C = h*n?/2ma?

E, is the “‘zero-point energy’”’
the lowest allowed energy
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Probability of Finding Electrons

Y = 2A4i-sinoax Y* = —2A4isimax
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Bohr radius
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(a) (b)
the electron waves associated

with an orbiting electron have to be standing waves. 2n
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Rutherford Bohr model

J: Yy dx = 4A2J

a

0

Nucleus

sin’ (ax) dx

1st shell = 2 electrons

2nd shell = 8 electrons

:
2

\3rd shell = 18 electrons

. x|
SIN X COS aX + 7
|
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Ho Classical mechanics

“The electron is held in a circular orbit by electrostatic attraction. The centripetal force is equal to the Coulomb force.
mv?  Zk.€e?

r 2
where m,, is the mass, e is the charge of the electron and k, is Coulomb's constant. This determines the speed at any radius:
Zk.e?
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MeT
It also determines the total energy at any radius:
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'ﬂ e Quantum rule

“The angular momentum L = mgvris an integer multiple of h:
m.vr = nh
Substituting the expression for the velocity gives an equation for rin terms of n:
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so that the allowed orbit radius at any n is:

n2h?
Th =
Zk.e?m,
The smallest possible value of rin the hydrogen atom is called the Bohr radius and is equal to:
h? %
ri=—— =0529x 107"’m
k.e‘m,
The energy of the n-th level is determined by the radius: 4
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-13.6eV
(lonization energy)

n=1

Energy levels of atomic hydrogen. E is the binding energy.
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three-dimensional potential well

“‘electron in a box’’

h*n? 2 2 2
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The smallest allowed energy in a three-dimensional potential well is
occupied by an electron if ny =n, = n, = 1

For the next higher energy there are
three different possibilities for combining the n-values

(nx,mynz) = (1,1,2), (1,2,1), or (2,1,1).

One calls the states which have the same energy

but different quantum numbers ‘“degenerate” states.
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.3. Finite Potential Barrier (Tunnel Effect
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.3\/ (E — V).

Vo>E

p becomes 1maginary
wll o Ceiﬂx - De"iﬂx, ------- > l//H — Ceyx -+ De_yx.

l//“ = CCD+DO
Yy are infinity

To avoid this, C has to go to zero: C — 0.

Yy = De 7,
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The electron wave ¥ b 1

rating wave

a light wave, which likewise penetrates to a certain degree into a material and
whose amplitude also decreases exponentially
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Quantum Tunneling

The penetration of a pote_ntial
barrier by an electron wave is called “tunneling”

~ tunnel diode, tunnel electron microscope, field ion microscope

In classical
physics, the electron (particle) would be described to be entirely reflected

back from the barrier (at x = 0) if its kinetic energy is smaller than Vj.
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Square well with finite potential barriers.
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4.4. Electron in a Periodic Field of a Crystal
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periodic potential distribution (simplified)  Qne-dimensional periodic potential distribution for a crystal

Kroning-Penny Model Muffin-Tin Potential
dzl// 2m az = -2——,;1-E,
) 5 FE!/I = (). h
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22 T (E— Vol =0. =25 (Vo - E).
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Bloch function

Bloch showed
that the solution of this type of quion has the following form:

il
«

ﬂ Y(x) = u(x) - ™

u(x) is a periodic—t{lnctionwisesses the
periodicity of the lattice in the x-direction

u(x) 1s no longer a constant (amplitude A) |
but changes periodically with increasing x (modulated amplitude)

u(x) is different for various directions in the crystal lattice.
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Differentiating the Bloch function twice

2 2
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(11) ;1-)-(32‘- + 2ik2; — (k2 +y})u = 0.

(I) y = e-—ikx(Aeiax K3 Be—iax)’
(Il) u= e‘”‘x(Ce"”" + De'*).

The derivation of band gap/ structure is out of
scope in this lecture
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Band Gap Theory for Crystal
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Electron energy E versus the wave vector k, for free electrons. energy band for crystalline

only certain special energy is allowed for
electron propagates inside the crystal

electrons in a crystal behave, for most k, values, like free electrons, except
when k, approaches the value n - n/a.
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(a) (b) (c)

Allowed energy levels for (a) bound electrons, (b) free electrons, and
(c) electrons 1n a solid.

If the electrons are strongly bound, 1.e., if the

potential barrier is very large, one obtains sharp energy levels (electron in the
potential field of one 10on). If the electron is not bound, one obtains a con-
tinuous energy region (free electrons). If the electron moves in a periodic
potential field, one receives energy bands (solid).
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Widening of the sharp energy levels into bands and finally into a quasi-
continuous energy region with decreasing interatomic distance, a, for a metal (after
calculations of Slater).
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